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Divide and Conquer for Linear Expi~ted Time 1

Jon Louis Bentley
and

Michael Ian Shamos

Departments of Computer Science and Mathematics
Carnegie-Mellon University

Pittsburgh,PA 15213

Key words and phrases: average -cue analysis, computational g.om.try,
convex hull, divide-and-conquer, expected tims, linear programming, random sets.

1. INTRODUCTION

Divide-and-conquer is one of the most frequently used methods for the design of fast
algorithms. The most common application of the technique involves breaking a problem of
size N into two subproblems of size N/2, solving these subproblems, then doing work
proportional to N to “marry” the partial answers into a solution for th. entire problem;
this scheme leads to algorithms of O(N log N) worst-case time complexity. In this pap r
we investigate a similar divide-and-conquer technique which can be used to construc t
algorithms with linear average-case time complexity.

The problem of determining the convex hull of a set of points in two and three
dimensions has produced a rash of recent papers (4, 8, 15, 16], all containing algorithms
with O(N log N) worst-case performance. That this is optimal follows from the fac t that in
the worst case all N points may be vertices of the convex hull, and since the vertices of a
convex polygon occur in sorted angular order about each interior point, any convex hull
algorithm must be able to sort (14, 8). If the boundary of the convex hull contains very
few points, however, this lower bound does not apply, and a faster algorithm may be
possible. The algorithm of Jarvis (5) runs in time O(hN), where h is the number of actual
hull vwrtices, and thus takes advantage of the fac t that h may be small . Unfortunately, if
h is not known ih advance, the algorithm may take quadratic time. Eddy (2] has
developed a hull algorithm analogous to QUICKSORT that has good empirical performance
but also has a quadratic worst case. Our goal in this paper is to use information .bout
the probability distribution of h to obtain an algorithm with 0(N) expected running time
without sacrificing O(N log N) worst-c ase behavior.

This new convex hull algorithm leads to linear expected-time solutions to a host of
• - other geometry problems that are related to hull-finding. Among these are determining

the greatest distance between two points of a set, the smallest circle enclosing a set, and
constructing linear pattern classifiers. Analogous techniques yield a linear average-case -_________

algorithm for linear programming in two variables. ~~“ ~~~ P
• I.fl $sctI.s Q

_ _ _ _ _ _ _ _ _ _  

a
Iy~~ rnss~ct~ woo suppo~t.d in p~d hy $M~ Offico of N.v.i Rm,.cch undo, C.* ct N000 4-71-C-OUt

ST - • • .

I SI$TIIIITISI/*Y$IL*$IL~TT CI1U

liii . LUlL suI, p 

•.. .•- ~~~~~~~~~ --



..~ 
• — ~ . - • ~~~~~~~~~~~~~~~~~~

—

~~~

The divide-and-conquer scheme we use to achieve the above results seems to be a
general method suitable for the construction of fast average-case algorithms. It achieves
fast expected time at the cost of making only relatively weak assumptions about the
underlying probability distribution of the inputs. Whereas many fast average-cue
algorithms display poor worst-case behavior (QUICKSORT, for example; see (133), those
that we give in this paper have optimal worst-case performance. These algorithms are
not merely of asymptotic interest -- they are (aster than provious methods even for
very small problem sizes (N> 40, for example).

In reading this paper , one must be very careful to keep in mind the distinction
between worst-case and average-case analyses. For example, while any convex hull
algorithm must run in time fl(N Ig N) for some inputs2, we will give an algorithm with
linear expected running time (for some distribution of inputs). Notice that there is no
contradiction between a worst-case lower bound of R(N ig N) and an average-cue
upper bound of 0(N).

• Basic results from stochastic geometry are described in Section 2; these results form
• the basis of our probabilistic analysis of the algorithms presented. In Section 3 we give

• a fast expected-time algorithm for finding convex hulls in the plane and investigate in
detail the schema used in the algorithm. Section 4 shows how this method can be applied
to other problems and used as a building block for developing additional fast expected-
time algorithms. Section 5 contains suggestions for further work along these tines.

2. RESULTS FROM STOCHASTIC GEOMETRY

Stochastic geometry deals with the properties of random sets of points, lines and other
• geometric objects and is an essential tool for analyzing the average case of geometric

algorithms. Many phenomena in geometrical probability are counter-intuitive and difficult
to explain without the tools of probabilistic measure theory. For example, the statement ,

• “Choose N points at random in the plane”, is meaningless without a precise specification
• of distribution from which the points are to be chosen. Furthermore, not all conceivable

• distributions satisfy the axioms of probability. Points can be chosen uniformly in the
• plane only from a set of bounded Lebesgue measure (6], so the intuitively attractive

notion of a uniform random selection from the whole plane must be discarded.

The problem ~f determining h(N), the expected number of vertices of the convex hull
11 of N points, has received a good deal of attention (1, 3, 9, 11). a summary of this work

may be found in (12]. We now quote several results that will be used later in analy zing
our algorithms:

Theorem 1. (Rényl and Sulanke (113) If N points aro chosen uniform ly
and independently at random in the plane from a convex r-gon, then
aeN- ’ co,

2W. soy Ihsi fiN) .Ns(N)) if f(N)l~($) is bound,d below by semi nonr ~ro conphsnt C ci N.. ..

2
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h(N) — (2r/3) ( I + log0N) • 0(1) . ( I • Euler’s constant)

Theorem 2. (Raynaud [9]) If N points are chosen uniformly and
independently at random from the interior of a k-dimensional
hypersphere, then as N -~ co, f(N), the expected number of faces of
the convex hull, is given asymptotically by

f(N) —

Since with probability one each face of the hull is simplicial and thus
is determined by K vertices, Theorem 2 implies that

h(N) — 0(Nil3) ,f or points chosen uniformly in a circle, and
h(N) — 0(N112) , for points chosen uniformly in a sphere.

Thus in any dimension, for points in $ hypersphere , the expected number
of hull vertices is bounded above by NP, for some p<1.

Theorem 3. (Raynaud (9]) If N points are chosen independently
from a normal distribution in Ii dimensions, then as N -. so the
asymptotic behavior of h(N) is given by

h(N) — O( (log N)~~~
12 )

A useful connection can be established between the stochastic properties of convex
hulls and the expected number of maximal vectors in a random set. A maximal vector is
one that is not less than any other in all components. Under very general conditions the
expected number of maximal vectors in a set is quite small:

Theorem 4. (Kung, Schkolnick, Thompson (7)) If N k-dimensional vectors
are chosen such that their components are distributed independently,
then A(N,k), the expected number of maximal vectors, is bounded by

A(N,k) ~ (log~N)~~
1 for N > 3.

Note that a vertex of the convex hull of a finite k-dimensional set is maximal for some
assignment of plus and minus signs to all coordinates of its points. This Implies that for
distributions satisfying the independence assumption of Theorem 4, th, expected number
of vertices of the convex l~ull is bounded by

E(h) ~ ~k (logeN)’~~ — 2 (2 log~N)~~
The mullivarinte normal of Theorem 3, the multivariate exponential, and the uniform
distribution over a hypercube all satisfy the independence-of-components assumption.
The qualitative behavior of the hulls of random sets may be understood intuitively as
follows: for uniform sampling within any bounded figure F, the hull of a random set wilt

• I ‘ tend to assume the shape of the boundary of F. If F is a polygon, points accumulating in
the “corners” will cause the resulting hull to have very few varlices. Oecauu the circle
has no corners , the expected number of hull vertices is comparatively high. It is
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reasonable that only some small fraction of the sample points should survive as hull
• vertices, but in all of the above theorems the order of h(N) is sublinear. Informally we

may account for this by noting that the hull is a manifold of strictly lower dimension than
the set from which the points are being chosen. If this is not true, we may have h(N) —
0(N). For example, if N points are selected uniformly on the boundary of a circle, then
h(N) — N. As we shall see in the next section, the only assumption about the distribution
of points that needs to be made in order to obtain a linear expected-time algorithm is
that h(N) — 0(NP), for some pci.

• 3. CONVEX HULLS IN THE PLANE

The fast convex hull algorithm is easily described as a recursive procedure: If N, the
F number of given points, is less than some constant C, then the procedure calculates the

hull by some straightforward method and returns. If N is large, though, the procedure
first divides the N points into two subsets of approximately 11/2 points each by a method

• which ensures that the resulting subproblems are random. It then finds the convex hulls
of the random subproblems recursively, which will take expected time 2T(Nf2), since the
subproblems are of the same form as the original. Th. result of each of the recursive
calls is a convex polygon whose expected number of vertices is O(N~), with pci. The hull

• 
• of the given set is now just the hull of the union of the hulls found in the subprob lems.

Shamos (15] has given an algorithm to find the hull of the union of two convex polygons
in time proportional to the total number of vertices of both. We may use this algorithm
to merge the results of the subproblems in expected time 0(PP). The averag. running
time of this algorithm thus obeys the recurrence

(1) T(N) — 2T(N/2) • O(N~)

whose solution , for pc i , is 1(N) — 0(N). Thus we have shown that the algorithm runs in
• linear expected time for point sets satisfying the assumptions made in Section 2.

We assumed above two important properties about the division step of th, divide-and-
conque r algorithm: that it can be accomplished in constant time and that the points in the

• subproblems obey the same probability distribution as do the original points. A division
step w ith these properties can easily be implemented on a RAM by storing the points in a
two by N array of carlesian coordinates. Each point is initially assigned a random
location in the array and a subset of the points is represented as a pair of integers

• which define the left and right endpoints of a segment of the array. Division into further
subsets can be accomplir,hed by taking the arithmetic mean of the endpoints as defining
two new segments, etc.; note that the division preserves randomness. In Implementing

• this algorithm recursively, it is crucial to pass only pointers in the subroutine calls. If
entire subproblems are passed, equation (I) no longer applies and an N log N algorithm
wilt result, no matter how few points are on the convex hull.

Let us now note the features of the above algorithm that give it linear expected time.
First, the expected size of the output is small. Second, solutions to the random
subproblems can be married quickly to form a solution to the total problem. Note that
the algorithm also has optimal worst-case performance. Since the largest hull that can be

- • returned by a subprobtem in of size N, we always have4
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(2) T(N) ~ 2T(N/2) + 0(N)

whose solution is T(N) s O(N log N). We can use this algorithm as a paradigm by which to
• . create others with linear expected time and optimal worst -case behavior.

4. FURTHER EXAMPLES -

The first simple extension of the algorithm of Section 3 gives a linear expected-time
algorithm for Iho convex hull of a set of points in three dimensions. Preparata and Hong,
in an important recent paper (83, have shown that the hull of the union of two disjoint
convex three-dimensional polyhedra can be found in time that in the worst case is only• linear in the total number of vertices. Their algorithm makes no essential use of the fact
that the polyhedra are disjoint and can be readily modified to include the case in which
the intersection is nonempty. If the points are drawn from a distribution satisfying the

• assumptions of Section 2, then the recurrence relation (1) applies and we again have a
linear expected-time algorithm.

Many geometric algorithms are based on finding convex hulls. For example, the
diameter of a set (distance between its two farthest points) is always realized by two
vertices of the hull. Furthermore, these points con be found in linear time (in tw o
dimensions) once the convex hull is available (14]. We thus immediately have a linear

• expec ted-time diameter algorithm. Somewhat more complicated is the problem of
determining the smallest circle enclosing a plane set of points. This is a classical problem
with an extensive literature. An O(N log N) worst-case algorithm is given in (163. It is
elementary to show that the two or three points determining this circle are vertices of
the convex hull. If we first find the hull with a linear expected-time algorithm, the time
required for the remaining step (finding the circle) is not linear in the number of hull
vertices. If E(h) is the expected number of hull vertices, we need to know E(h log h) to
complete the analysis. Note that we always have 1 ~ h ~N and

N
I ~~i—i

whore p1 is the probability that h—i. Now, since log i ~ log N,

N
E(h log h) — I (i log i) p,

i— i

~ (log N) E(h)

Thus, If E(h) — O(NP), pci , then E(h log h) — Q(N~), for some qci. We may therefore find
• 

- ‘ the smallest circle enclosing a plane set in linear average tim..

In general, determining expectation values of functions of h is a difficult problem and

t 5
I
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we often must be satisfied with upper bounds. The largest area triangle determined by
three points of a set of N points in the plane can be found in time that is quadratic In the
number of vertices of the hull f 15]. In order to be able to calculate th. average-case
behavior of the algorithm, we must compute E(h2). If E(h) — 0(PP), then certainly
E(h2) � 0(N~~~). Applying Theorem 2, we may find the largest determined triangle in
0(N4/3) expected time in two dimensions, and this bound is highly pessimistic.

Theorem 4 leads directly to a linear expected-time algorithm f or fin ding the maxima of
N k-dimensional vectors whose coordinates are chosen independently. It is only
necessary to remark that the marriage step of the divide-and-conquer algorithm finds the
common maxima of two subproblems of size N/2, each of which has very few maxima, on
the average.

• We often observe that the performance of an algorithm is much better than its worst-
case lower bounds would load us to expect; the Simplex algorithm for linear programming
is a striking example of this phenomenon. Fast as Simplex is, however, it is known not to
be optimal for problems with small numbers of variables, and a divide-and-conquer
approach can be used to advantage (17]: the feasible region of a two-variable problem is

• the intersection of the half-planes determined by the linear constraints. It we denote the
~th half-plane by Hi, then we want to form

H Hl n H 2 n . . . A H N
Since the intersection operator is associative, this may be rearranged as

( H 1 n ... n HN/2 ) ~l (HN/2i 1 n . . .  n HN ).

Each term is an intersection of N/2 half-planes, and is thus a convex polygonal region of
at most N/2 vertices. The intersection of two such figures can be found in linear time at
worst (14], so equation (2) describes the worst-case behavior of the algorithm. We may
thus find the intersection of N half-planes in O(N log N) time. If many of the half-planes
are redundant, though, the final intersection will have very few vertices, and we may
take advantage of this fact to develop a better algorithm. Suppose that 1(0 is a bounded
convex region of the plane that contains another convex region K1. It N lines L, are
drawn independently and at random to meet 

~~ 
but not and we define H~ to be the

cloned half-plane bounded by L~ that contains consider E(v), the expected number of
H; vertices of the intersection of all the H1~ 

Preliminary results were obtained by Rényi and
Sulanke (10) and Ziezold [18) has shown by duality that E(v) is of the same asymptotic

- 

• order as the expected number of points on the hull of a set of N points drawn uniformly
within If shrinks to a point, then E(v) approaches lie constant n2f2. In any
event, under fairly conservative assumptions we will have E(v) — 0(lP), pci, and a linear
average-case algorithm for intersecting N half-planes results. This leads immediately to
an 0(N) expected-time algorithm f or linear programming in two variables and for finding
the kernel of a polygon (14].

5. SUGGESTIONS FOR FURTHER WORK

6
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It is natural to try to extend the results of this paper to higher-dimensional problems

in geometry and to other problem domains. The limiting factor, however, is not the
technique but our inadequate knowledge of the properties of random sets and our

4 inability to develop efficient merge procedures to make divide-and-conquer productive.
As an example, no method is now known to find the hull of the union of four-dimensional
polyhedra in less than quadratic expected time. (Quadratic time ~~~, required in the worst
case. See (8].) LiKewise, the expected value of the square of the number of vertices of
the hull of N points chosen unif orml y in a four-dimensional hyperephere in not known to
be less than 0(N8/5). We are thus unable to give an algorithm for the four-dimensional
convex hull whose expected running time is provably less than 0(N8/5).
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